Analysis of the soft error susceptibility and failure rate in logic circuits
نویسندگان
چکیده
The failure rate of logic circuits due to high-energy particles originating from outer space has been increasing dramatically over the past 10 years. Whereas soft errors have traditionally been of much greater concern in memories, smaller feature sizes, lower voltage levels, higher operating frequencies, and reduced logic depth are projected to cause a dramatic increase in soft error failure rate in core combinational logic in near-future technologies. Traditional fault tolerance strategies may be utilized to protect against these failures; however, the excessive area overhead and stringent power dissipation requirements have made these techniques obsolete, especially in mainstream applications. Therefore, there is an urgent necessity to identify the weak steps during the synthesis of these components that result in the generation of highly-susceptible designs. In this paper, we analyze the susceptibility of logic circuits to transient pulses through an extensive set of logic synthesis experiments while varying the synthesis process. Our aim is to identify the correlation between the key design options and their consequent effect on the susceptibility of the produced implementation. The results in this work reveal that the SER is strongly correlated with logical masking of transient pulses and, thus, fast logic-level soft error failure rate assessment methods can be used in place of computationally-intensive circuit-level assessment techniques. Furthermore, we project that logical masking will become the dominant source for protecting logic circuits from transient pulses, which encourages the development of logic synthesis techniques that maximize the logical masking of potential transient pulses.
منابع مشابه
Partial Error Masking to Reduce Soft Error Failure Rate in Logic Circuits
A new methodology for designing logic circuits with partial error masking is described. The key idea is to exploit the asymmetric soft error susceptibility of nodes in a logic circuit by targeting the error masking capability towards the nodes with the highest soft error susceptibility to achieve cost-effective tradeoffs between overhead and reduction in the soft error failure rate. Such techni...
متن کاملCost-Effective Approach for Reducing Soft Error Failure Rate in Logic Circuits
In this paper, a new paradigm for designing logic circuits with concurrent error detection (CED) is described. The key idea is to exploit the asymmetric soft error susceptibility of nodes in a logic circuit. Rather than target all modeled faults, CED is targeted towards the nodes that have the highest soft error susceptibility to achieve cost-effective tradeoffs between overhead and reduction i...
متن کاملSymbolic Analysis of Circuit Reliability
Due to shrinking feature size and significant reduction in noise margins, nanoscale circuits have become more susceptible to manufacturing defects, noise-related transient faults and interference from radiation. Traditionally, soft errors have been a much greater concern in memories than in logic circuits. However, as technology continues to scale, logic circuits are becoming more susceptible t...
متن کاملReversible Logic Multipliers: Novel Low-cost Parity-Preserving Designs
Reversible logic is one of the new paradigms for power optimization that can be used instead of the current circuits. Moreover, the fault-tolerance capability in the form of error detection or error correction is a vital aspect for current processing systems. In this paper, as the multiplication is an important operation in computing systems, some novel reversible multiplier designs are propose...
متن کاملA Soft Error Emulation System for Logic Circuits
In nanometer technologies, soft errors in logic circuits are increasingly important. Since the failure in time (FIT) rates for these circuits are very low, millions of test vectors are required for a realistic analysis of soft errors. This exceeds the capabilities of software simulation tools. We propose an FPGA emulation architecture that can apply millions of vectors within seconds. Comprehen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Int. Arab J. Inf. Technol.
دوره 8 شماره
صفحات -
تاریخ انتشار 2011